#### Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.

additive inverses ......a number and its opposite whose sum is zero

(0); also called *opposites* 

Example: In the equation 3 + (-3) = 0, the

additive inverses are 3 and -3.

base (of an exponent)

(algebraic) .....the number used as a factor in exponential

form

Example:  $2^3$  is the exponential form of  $2 \times 2 \times 2$ . The numeral two (2) is called the base, and the numeral three (3) is called the

exponent.

binomial .....the sum of two monomials; a polynomial with

exactly two terms

Examples:  $4x^2 + x$  2a - 3b  $8qrs + qr^2$ 

canceling ......dividing a numerator and a denominator by

a common factor to write a fraction in lowest

terms or before multiplying fractions

Example:  $\frac{15}{24} = \frac{{}^{1}\mathcal{Z} \bullet 5}{2 \bullet 2 \bullet 2 \bullet \mathcal{Z}_{1}} = \frac{5}{8}$ 

**coefficient** .....the number that multiplies the variable(s) in an

algebraic expression

*Example*: In 4xy, the coefficient of xy is 4. If no number is specified, the coefficient is 1.

**common factor** .....a number that is a factor of two or more

numbers

*Example*: 2 is a common factor of 6 and 12.

**commutative property** ......the order in which two numbers are added or multiplied does *not* change their sum or product, respectively

Examples: 2 + 3 = 3 + 2 or  $4 \times 7 = 7 \times 4$ 

**composite number** ......a whole number that has more than two factors *Example*: 16 has five factors—1, 2, 4, 8, and 16.

counting numbers

(natural numbers) ......the numbers in the set  $\{1, 2, 3, 4, 5, ...\}$ 

**denominator** ......the bottom number of a fraction, indicating the number of equal parts a whole was divided into

*Example*: In the fraction  $\frac{2}{3}$  the denominator is 3, meaning the whole was divided into 3 equal parts.

**distributive property** .......the product of a number and the sum or difference of two numbers is equal to the sum or difference of the two products

Examples: x(a + b) = ax + bx $5(10 + 8) = 5 \cdot 10 + 5 \cdot 8$ 

exponent

(exponential form) ......the number of times the base occurs as a factor *Example*:  $2^3$  is the exponential form of  $2 \times 2 \times 2$ . The numeral two (2) is called the *base*, and the numeral three (3) is called the *exponent*.

expression ....... a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables  $Examples: 4r^2; 3x + 2y; \sqrt{25}$  An expression does *not* contain equal (=) or inequality (<, >,  $\leq$ ,  $\geq$ , or  $\neq$ ) signs.

factored form ......a number or expression expressed as the product of prime numbers and variables, where no variable has an exponent greater than 1

**FOIL method** ...... a pattern used to multiply two binomials; multiply the first, outside, inside, and last terms:

**F** First terms

O Outside terms

I Inside terms

L Last terms.

Example:



greatest common

factor (GCF).....the largest of the common factors of two or

more numbers

Example: For 6 and 8, 2 is the greatest common

factor.

**grouping symbols** ......parentheses ( ), braces { }, brackets [ ], and

fraction bars indicating grouping of terms in

an expression

integers ......the numbers in the set

{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...}

**like terms** .....polynomials with exactly the same variable

combinations; terms that have the same variables and the same corresponding

exponents

Example: In  $5x^2 + 3x^2 + 6$ , the like terms with the

same variable combinations are  $5x^2$  and  $3x^2$ .

**monomial** ......a number, variable, or the product of a number

and one or more variables; a polynomial with

only *one* term

Examples: 8 x 4c 2 $y^2$  -3  $\frac{xyz^2}{9}$ 

natural numbers

(counting numbers) ....... the numbers in the set  $\{1, 2, 3, 4, 5, ...\}$ 

**numerator** ..... the top number of a fraction, indicating the

number of equal parts being considered

*Example*: In the fraction  $\frac{2}{3}$ , the numerator is 2.

**opposites** ......two numbers whose sum is zero; also called *additive inverses* 

Examples: 
$$-5 + 5 = 0$$
 or  $\frac{2}{3} + (\frac{2}{3}) = 0$  opposites

order of operations ......the order of performing computations in parentheses first, then exponents or powers, followed by multiplication and/or division (as read from left to right), then addition and/or subtraction (as read from left to right); also called *algebraic order of operations* 

Example: 
$$5 + (12 - 2) \div 2 - 3 \times 2 =$$
  
 $5 + 10 \div 2 - 3 \times 2 =$   
 $5 + 5 - 6 =$   
 $10 - 6 =$   
 $4$ 

**polynomial** ...... a monomial or sum of monomials; any rational expression with no variable in the denominator  $Examples: x^3 + 4x^2 - x + 8 + 5mp^2$ 

Examples: 
$$x^3 + 4x^2 - x + 8$$
 5mp<sup>2</sup>  $-7x^2y^2 + 2x^2 + 3$ 

**power (of a number)** ......an exponent; the number that tells how many times a number is used as a factor *Example*: In 2<sup>3</sup>, 3 is the power.

**prime factorization** .........writing a number as the product of prime numbers  $Example: 24 = 2 \times 2 \times 2 \times 3 = 2^3 \times 3$ 

| product | the result of multiplying numbers together |
|---------|--------------------------------------------|
|         | Example: In 6 x 8 = 48, the product is 48. |

**quotient** ..... the result of dividing two numbers 
$$Example$$
: In  $42 \div 7 = 6$ , the quotient is 6.

**rational expression** ....... a fraction whose numerator and/or denominator are polynomials
$$Examples: \frac{x}{8} \quad \frac{5}{x+2} \quad \frac{4x^2+1}{x^2+1}$$

Examples: 
$$6 + y + 3z + 4z = 6 + y + 7z$$
  

$$\frac{6xy^2}{5} + \frac{7xy^2}{5} = \frac{13xy^2}{5}$$

#### standard form (of a

**quadratic equation)** ......
$$ax^2 + bx + c = 0$$
, where  $a$ ,  $b$ , and  $c$  are integers (not multiples of each other) and  $a > 0$ 

sum ......the result of adding numbers together 
$$Example$$
: In  $6 + 8 = 14$ , the sum is 14.

term ......a number, variable, product, or quotient in an expression 
$$Examples$$
: In the expression  $4x^2 + 3x + x$ , the terms are  $4x^2$ ,  $3x$ , and  $x$ .

**trinomial** ..... the sum of three monomials; a polynomial with exactly *three* terms 
$$Examples: x + y + 2 \qquad m^2 + 6m + 3$$
 
$$b^2 - 2bc - c^2 \qquad 8j^2 - 2n + rp^3$$

variable ......any symbol, usually a letter, which could represent a number

**whole numbers** .....the numbers in the set {0, 1, 2, 3, 4, ...}

zero property of multiplication or

**zero product property** ...... for all numbers a and b, if ab = 0, then a = 0 and f or f and f are f and f or f and f or f and f are f and f and f are f and f and f are f and f and f are f are f are f are f and f are f and f are f ar